Gender differential in self-assessment: a fact neglected in higher education peer and self-assessment techniques

Soledad Torres-Guijarro & Mercedes Bengoechea

To cite this article: Soledad Torres-Guijarro & Mercedes Bengoechea (2016): Gender differential in self-assessment: a fact neglected in higher education peer and self-assessment techniques, Higher Education Research & Development, DOI: 10.1080/07294360.2016.1264372

To link to this article: http://dx.doi.org/10.1080/07294360.2016.1264372

Published online: 16 Dec 2016.

Submit your article to this journal

Article views: 22

View related articles

View Crossmark data
Gender differential in self-assessment: a fact neglected in higher education peer and self-assessment techniques

Soledad Torres-Guijarro and Mercedes Bengoechea

Signal Theory and Communications Department, University of Vigo, Galicia, Spain; Modern Philology Department, University of Alcalá, Madrid, Spain

ABSTRACT
This paper analyses student cross-assessment with a gender perspective in three different courses along several academic years in an engineering school in Spain. The aim of this study is to contribute to a wider understanding of the hidden effect of gender in higher education by testing if gender has any effect on the way students assess others and themselves. Previous research has demonstrated sex differences in self-image and self-confidence, which are both closely related to self-esteem and same- and other-sex esteem. It follows that gender effects might be expected in investigations on peer and self-assessment (PSA), as both techniques are closely linked to self-image and self-confidence. But a critical review of the literature on PSA with a gender perspective reveals that findings on this field are inconclusive, thus more research is needed. The analysis of the results of our study reveals that women judge themselves too harshly. As the literature on PSA does not show great concern for gender issues, some tentative suggestions are proposed to support PSA with gender-awareness sessions.

ARTICLE HISTORY
Received 28 December 2015
Accepted 13 October 2016

KEYWORDS
Gender bias; peer assessment; self-assessment; peer and self-assessment; female self-esteem; assessment techniques; higher education

Introduction
The aim of this study is to contribute to a wider understanding of the hidden effect of gender in higher education (hereafter HE) by testing whether the way students assess others and themselves is somehow affected by gender.

We were concerned with a certain tendency on the part of women to low self-esteem, as revealed by results of more than a century of research on sex differences (summarized in Ellis et al., 2008). Hypothesizing that this may have an effect on the way students rate themselves and others, we set out to investigate whether two of the assessment techniques more directly related to self-esteem or same-sex esteem, self-assessment (hereafter SA) and peer assessment (hereafter PA), may be influenced by gender. A review of the investigations on gender and PA and SA made us conclude the relative absence of studies on this topic and the need for further investigation.

We decided to focus on student PA and SA in three different courses along several academic years in an engineering school in Spain. Two were the reasons for this focus. On the
one hand, one of the researchers being a lecturer in the School of Engineering facilitated the investigation. On the other hand, we were particularly concerned with the way women see themselves in engineering studies: we were aware of the biases linked with being a minority in a Technology or Engineer classroom (Thompson & Sekaquaptewa, 2002), and the strong stereotypes about women’s poor math ability (Reuben, Sapienza, & Zingales, 2014; Schmader, Johns, & Barquissau, 2004). Additionally, according to Cech, Rubineau, Silbey, and Seron (2011), women in Engineering careers lack ‘professional role confidence’ – individuals’ confidence in their ability to successfully fulfill the roles, competencies and identity features of a profession – compared to men. We thought that all those facts might have some effect in peer and self-assessment (hereafter PSA).

The paper starts by summarizing research on sex differences in the perception of oneself and others, and a critical review of the literature on PSA with a gender perspective. Then we present the data and results of our analysis, which suggest that PSA are techniques which may be potentially affected by gender. Consequently, and taken into account the relative absence of tools to integrate gender issues into PSA, we recommend supporting PSA in HE with gender-awareness sessions, at least in engineering schools.

Sex differences in the perception of oneself and others, a gendered issue

In 2008, Ellis et al. compiled a huge compendium of a century of research on sex differences. In its conclusions, the book lists sex differences which occur in more than 10 studies, whose findings internally agree, and which are universal across cultures and consistent over time. Among the sex differences which may have a direct or indirect influence on PSA: males have a more favourable self-concept/self-image and more self-confidence/self-assuredness, and probably have more confidence in their abilities, including their academic abilities (this contradicts the fact that most studies show that females perform better academically, as revealed in Ellis et al., 2008). On the other hand, females seem to attribute more their success to luck or other external forces, and failure to internal forces, such as lack of sufficient ability or hard work (the latter trait is one of the ‘most certain universal sex differences’, as Ellis et al. call them). Additionally, females tend to express greater test anxiety or anxiety involving academic performance, and males greater optimism about their potential for success at both academic and occupational pursuits. All these traits manifest men’s and women’s self-esteem, which may be the result of men’s and women’s gender socialization process.

Self-esteem can be defined as an overall evaluation of one’s worth, and is closely related to social inequality. Rosenfield (1999) is one of the scholars who have provided a feminist explanation of female low self-esteem. According to her, women and men have different social structural experiences which are reflected in the relative social power of women and men, which, in turn, will influence gender self-appraisal. And ‘given the power, the responsibility in the public domain, receipt of support, and value placed on masculine pursuits, males generally tend toward high self-esteem’ (Rosenfield, 1999, p. 220). The United Nations have offered an explanation of women’s self-bias as well:

> according to a classic theory of minority behaviour, women who are successful in a man’s world absorb the dominant culture to such an extent that they tend to dissociate themselves from other women, to underrate their own success and to perceive any discrimination they meet as a result of their own shortcomings. (2010, p. 113)
Pre-existing implicit bias may also reinforce the evaluation of others. In a man-centred world, not only do women underrate themselves, they also tend to underrate other women. Proofs of the effects of our androcentric culture are all around: according to Ellis et al. (2008), males are preferred as supervisors, managers or leaders by both males and females. In HE, investigations have shown men’s tendency to underrate female performance as well. In an investigation on how gender impacts peer perception, undergraduate students were asked to anonymously list class peers who they felt were ‘strong in their understanding of classroom material’ at multiple time points throughout three iterations of a large introductory biology class at the University of Washington (Grunspan et al., 2016). The study revealed that males were more likely than females to be named by peers as being knowledgeable about the course content. This effect increased as the term progressed, and persisted even after controlling for class performance and outspokenness. The bias in nominations was specifically due to males over-nominating their male peers relative to their performance: male peers disproportionately nominated males as being knowledgeable about biology while females nominated males and females equally. This may indicate that males hold a bias against their female peers’ competence, at least in sciences.

Of course, not all women and girls undervalue their work, and not all boys and men are arrogant about theirs. But the conclusions of more than a hundred years of research on sex differences are potent and convincing enough to recommend teachers to be on the alert for their effects when applying assessment techniques which involve: (a) self-rating, as in SA and (b) other women’s and other men’s rating, as in PA. In the next section, we will critically review previous research on gender and assessment in HE to see if this has already been suggested in the literature.

Gender in PSA

As HE learning environment is increasingly more student-centred, PA and SA are two assessment techniques often used to engage students in feedback. In PA, ‘students use criteria and apply standards to the work of their peers in order to judge that work’ (Falchikov, 2005, p. 27), whereas in SA students judge their own work. Have investigations revealed whether gender has an influence on PSA?

Peer assessment

PA is a technique which permits students not only to grade their peers’ work, but to value the level, merit or quality of their performance. In HE there is now a growing trend for students to work in teams, and get their individual grades from both team performance and PA.

It has often been stated that PA is a beneficial tool for students’ learning process and grade assigning (e.g., Langan & Wheater, 2003), as it is a technique considered to improve students’ critical thought (e.g., Sasmaz Oren, 2012; Searby & Ewers, 1997; Sluijsmans, Dochy, & Moerkerke, 1999; Topping, 1998) and to provide relevant skills for graduates’ professional work, such as being criticized by others of the same rank and coping with the responsibility of judging peers’ work fairly (Planas Lladó et al., 2013; Sluijsmans et al., 1999; Topping, 1998). But the method also has some potential pitfalls, among them a possible lack of objectivity.
Indeed, although several investigations have concluded that students have a positive attitude towards PA, before and after implementing it (Hanrahan & Isaacs, 2001; Planas Lladó et al., 2013), some students have raised objections to its accuracy and validity, attributing the grade received to lack of objectivity on the part of their fellow students (Carvalho, 2013; Cheng & Warren, 2005; Planas Lladó et al., 2013). In another study (Miller & Ng, 1994), students of English as a second language expressed discomfort with online peer evaluation, primarily over ‘loss of face’.

This likely limitation of the methodology has only occasionally been linked to gender in HE, and when it has, the relationship seemed tenuous and insubstantial, as shown later. This comes to no surprise, as in the very extensive literature on assessment the investigations that take gender into consideration are very limited. In the hundreds of papers in the literature which deal with the elaboration, implementation, validity and accuracy of PA, for reasons that escape us, the gender factor does not seem to find much space.

Some researchers have expressed their concern about its relevance though. One of them is Nancy Falchikov, who in her influential book (2005) devoted some two pages to discuss the potential of PA to be gender biased. She concluded that it is an area in which a lot of research is needed:

Given the prevailing view, which I share, that gender differences in attitudes to peer assessment or in peer assessment abilities exist, it is surprising that no hard evidence for such differences [between male and female PA] have come to light. […] This is an important area to watch out for. (Falchikov, 2005, p. 206)

We cannot but agree with her, especially because the findings of gender effects in the literature have been, at least, quite equivocal, as we summarize below.

Most of the relatively low number of studies interested in the effect of gender in PA in HE did not observe gender bias. Regarding PA of oral presentations, for instance, Falchikov and Magin (1997) and Sellnow and Treinen (2004) reported that neither the gender of the student presenter, nor the gender of the student assessor affected overall peer ratings. Gender was not found to be a significant factor either for Gopinath (1999), who focused on PA of class participation; for Gatfield (1999), who investigated gender effects in satisfaction with PA or for Mozas-Calvache and Barba-Colmenero (2013) and Dingel and Wei (2014), who studied peer evaluation of group projects.

Nevertheless, some studies of PA in university students have found a different pattern. In a Turkish study, female students in a science teaching course received significantly higher mean assessment scores than male students in assessment from peers and to peers (Sasmaz Oren, 2012). Their findings are consistent with some previous research: May and Gueldenzoph (2006) and Ammons and Brooks (2011). Tucker found a similar pattern in his 2013 extensive research, the largest published analysis up to now – women receiving significantly higher ratings than men. None of those studies attributed the different rates to gender bias, though, but to male generosity or to women’s higher grade point average (i.e., to gender differences). As a consequence, the authors mentioned above tend to conclude that PA ‘is an effective, viable and reliable method for individualising marks’ (Tucker, 2013, p. 307).

Gender was an influential factor as well in Johnson and Smith (1997) and Kaufman, Felder, and Fuller (2000), but in the opposite direction – males receiving higher rates than females. Also Langan and Wheater (2003) and Langan et al. (2005, 2008) detected that, in comparison with tutor grades, males tended to grade their fellow male speakers
very slightly more highly than female speakers in oral presentations, whereas marks from females were unaffected by the gender of speakers. And in Bryan, Krych, Carmichael, Viggiano, and Wojciech (2005), additionally to higher rates, males received more positive comments. And it was not only a question of males overrating other males; the parallel occurrence was that females underrated other females in a study which measured oral presentation skills: de Grez, Valcke, and Roozen (2012) reported that male peers allocated higher scores to female presenters than female peers did, which means that females judged other females more severely.

Such ambiguous results led us to the consideration that more research on the effects of gender in PA seemed advisable, as our initial hypothesis, that gender might have an effect on PA, had not been totally refuted or confirmed in previous investigations.

Self-assessment

Generally speaking, self-assessment scores are higher than the marks given by teachers (de Grez et al., 2012). Nevertheless, it is generally accepted that most students – but not all – are able to assess themselves in the way that teachers apply assessment criteria, as Falchikov (2005) indicated. Among those whose criteria do not coincide with teachers’ are mainly novices and low performers, who are deficient in abilities such as monitoring and evaluation and tend to overestimate their performance level (Dochy, Segers, & Sluijsmans, 1999; Kruger & Dunning, 1999; Lew, Alwis, & Schmidt, 2010).

But lack of training or metacognitive abilities are not the only factors which may lead to self-misapplication of assessment criteria: although often ignored in the literature on SA, gender may have an influence too. Despite the fact that three studies have not found gender effect in SA (Ammons & Brooks, 2011; Gopinath, 1999; Mattheos, Nattestad, Falk-Nilsson, & Attstrom, 2004), at least eight investigations (Bryan et al., 2005; Das, 1998; Langan et al., 2005; Lind, Rekkas, Lam, Beierle, & Copeland, 2002; Pallier, 2003; Rees, 2003; Rust, Price, & O’Donovan, 2003) concluded that, compared with tutor awarded marks, women are more likely to underestimate the quality of their own performance and males to overestimate it when self-assessing. This possibility had been observed previously by Thomas (1990) and Gibbs (1991), but notably, in Rees’s study (2003) up to 72.7% of females underrated their performance whereas 73.3% of the males overrated theirs. And not only do females seem to have a tendency towards lower confidence in their performance than males, according to Pope (2005) female students are more stressed when self-assessing.

The fact that most investigations found that gender does affect SA seems to be in line with our starting assumption, and we hypothesized that SA would be the assessment type most strongly affected by female low self-esteem.

Gender bias?

Given the inconclusive findings detailed above, it seemed clear for us that more research on the effect of gender in PSA was needed. PA helps students to get feedback from their mates, besides their teachers. But if this feedback were gender biased, students might have a negative impression of their own performance and a more pessimistic expectation about their own possibilities. On the other hand, SA helps students to reflect on the quality of their own work and to identify their strengths and weaknesses. If males or females
approached SA with an over/under estimation of their own possibilities and performances, their SA would raise countless doubts and questions.

Another problem is that few studies have linked reported sex differences to gender socialization and the latter to the limitations of the effectiveness of PSA. For instance, a study on the different attitudes toward peer evaluation between female and male learners of English as a second language in Taiwan (Wen & Tsai, 2006) found that males were more likely to have positive attitudes than females. The study did not go further into the reasons for and consequences of this difference. They did not speculate that females might unconsciously mistrust other (male or female) students as being gender biased against females, or they might be more concerned than males over the loss of face that the process entailed. In other words, they did not ask whether achievement is seen as masculine by the community; whether public humiliation and direct criticism might be better accepted by males than by females because of their socialization (as suggested as early as 1982 by Maltz and Borker); whether this might entail that females engage in PA more reluctantly than males and whether this might affect the implementation of PA in HE.

As a consequence, a most significant fact in all the literature is that, even in the few occasions that sex has been shown to be relevant in PA or SA, in general it has not been linked to gender self-perception and no suggestions on how to tackle this bias have been made in the conclusions. Researchers seem to ignore the social inequity and the political issues that lie behind gender matters. It is our claim that, should gender be found to have a role to play in either in PA or SA, some tentative recommendations on how to avoid it must be delivered.

Our analysis

We assumed that, given the prevailing bias against women in the field of Technology and Engineering, the female tendency to low self-esteem reported in other investigations might be particularly manifested in SA and PA in a School of Engineering. In order to prove that, we decided to analyse with a gender perspective the PSA provided by the students enrolled in the courses taught by one of the investigators.

The courses under study, offered in the third and fourth year of the Sound and Image itinerary of the Telecommunication Engineering Degree, are as follows: Audio Systems (2012–2013, 2013–2014 and 2014–2015 academic years), Fundamentals of Acoustic Engineering (2014–2015 academic year) and Audiovisual Technology (2014–2015 academic year). In these courses, students develop technical projects in groups as a learning methodology targeted to foster student teamwork and project-oriented skills. Teachers allocate students to teams of three to seven, and provide them with detailed information on objectives, tasks and deadlines of their project. Examples of projects are as follows: the acoustic characterization of a loudspeaker, the design of the sound reinforcement system of an outdoor concert or the design of the connectivity solution of the sound take and reproduction equipment in a multimedia room. To achieve these objectives, students distribute roles within the team and schedule tasks, such as audio measurements and mathematical computations. They report their results through written reports, oral presentations and web pages.

The assessment of these courses combines the group project grade, which is worth 35–50% of the course final grade; a written exam, worth 50% and, in some cases, the
grades of other practical tasks. Students are asked to assess their group fellows as a method for individualizing group marks; 15–25% of the project grade corresponds to PA. Additionally, PA allows the teacher to detect team malfunctions and provide help. Students are also asked to assess themselves. SA does not contribute to the final grade, but is feedbacked to the students together with PA averages, so that they can compare how they judge themselves related to how they are judged by their fellows. As shown below, the analysis of PA and SA results with a gender perspective provide valuable information on how women see their contribution to the teamwork, compared with that of men and other women.

Data description

Students carry out PA and SA by answering an online form where the following facets of teamwork must be evaluated:

(a) Contribution to the team’s work
(b) Interacting with teammates
(c) Keeping the team on track
(d) Expecting high quality
(e) Having related knowledge, skills and abilities.

Students grade each facet from 1 to 5. The form includes a description of rating to help them in this task. For instance, rating 5 in Contribution to the team’s work means ‘Does more or higher quality work than expected. Makes important contributions that improve the team’s work. Helps teammates who are having difficulty completing their work’, while rating 1 means ‘Does not do a fair share of the team’s work. Delivers sloppy or incomplete work. Misses deadlines. Is late, unprepared or absent for team meetings. Does not assist teammates. Quits if the work becomes difficult’. Rating 5 in Interacting with teammates means ‘Asks for and shows an interest in teammates’ ideas and contributions. Makes sure teammates stay informed and understand each other. Provides encouragement or enthusiasm to the team. Asks teammates for feedback and uses their suggestions to improve’, while rating 1 means ‘Interrupts, ignores, bosses or makes fun of teammates. Takes actions that affect teammates without their input. Does not share information. Complains, makes excuses or does not interact with teammates. Is defensive. Will not accept help or advice from teammates.’ Rating 5 in Keeping the team on track means ‘Watches conditions affecting the team and monitors the team’s progress. Makes sure that teammates are making appropriate progress. Gives teammates specific, timely and constructive feedback’, while rating 1 means ‘Is unaware of whether the team is meeting its goals. Does not pay attention to teammates’ progress. Avoids discussing team problems, even when they are obvious.’ Rating 5 in Expecting high quality means ‘Motivates the team to do excellent work. Cares that the team does outstanding work, even if there is no additional reward. Believes that the team can do excellent work’, while rating 1 means ‘Satisfied even if the team does not meet assigned standards. Wants the team to avoid work, even if it hurts the team. Doubts that the team can meet its requirements.’ Finally, rating 5 in Having related knowledge, skills and abilities means ‘Demonstrates the knowledge, skills and abilities to do excellent work. Acquires new knowledge or skills to improve the team’s performance. Able to perform the role
of any team member if necessary’, while rating 1 means ‘Missing basic qualifications needed to be a member of the team. Unable or unwilling to develop knowledge or skills to contribute to the team. Unable to perform any of the duties of other team members.’ The full description of the test can be found in Catme Smarter Teamwork (2012).

In the opinion of the authors, and of many other teachers, it is a very useful tool for PA: since its deployment in 2005, more than 3,300 instructors at nearly 700 institutions in 50 countries have used it with over 150,000 students (Loughry, Ohland, & Woehr, 2014).

For this study, the results of the poll corresponding to the three courses and three academic years analysed are merged in a single data set, consisting of the answers to facets (a) to (e) above. Then this data set is split into six categories for each polled facet, depending on the gender of the rater and the ratee. Table 1 summarizes the size of the population (number of available answers) in each category, where the symbol $w \rightarrow m$ means ‘women rating men’ PA and $\rightarrow w \leftarrow$ represents women SA. As can be deduced from the number of self-assessments, the enrolment is far from being gender-balanced, as is usual in technical careers.

The results for each category and facet in the poll are presented in Figure 1 in the (3, 4) interval for the sake of clarity, with a denser pattern fill for the SAs than for the PAs. The average rating for the five facets is also included. Bar height represents the mean of each population, which is also shown numerically, and whisker the standard error.

Findings

The answers to each facet are analysed by comparing the categories in pairs. The comparison is done in terms of effect size, by computing Cohen’s d, and the statistical significance, by performing the t-test. We will conclude that two categories have significantly different results when the effect size d is larger than 0.5, and the result of the t-test p is below 0.05. According to this rule, the following categories have significantly different results in each polled facet:

Contribution to the team’s work: Women SA is lower than men-to-men PA ($d = 0.549, p = .000$), women-to-men PA ($d = 0.669, p = .000$) and men-to-woman PA ($d = 0.645, p = .000$).

Interacting with the teammates: There are not significant differences between categories in this facet.

Keeping the team on track: Women SA is lower than men-to-men PA ($d = 0.521, p = .018$), women-to-men PA ($d = 0.566, p = .001$) and men-to-women PA ($d = 0.726, p = .000$). In addition, women SA is lower than men self-assessment ($d = 0.596, p = .001$).

Expecting high quality: There are not significant differences between categories in this facet.

Having related knowledge, skills and abilities: Women SA is lower than men-to-men PA ($d = 0.702, p = .000$) and women-to-men PA ($d = 0.909, p = .000$). These two pairs of categories show the largest effect sizes of all the analysis.

The above results show that there are two facets, Contribution to the team’s work and Keeping the team on track, in which women SA is significantly lower than all PA, except

<table>
<thead>
<tr>
<th>PA</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w \rightarrow w$</td>
<td>$w \rightarrow m$</td>
</tr>
<tr>
<td>66</td>
<td>251</td>
</tr>
</tbody>
</table>

Table 1. Number of PA and SA available for the study. $w \rightarrow m$: women rating men PA. $\rightarrow w \leftarrow$: women SA.
women to women PA. In this last facet, women SA is also lower than men SA. In Having related knowledge, skills and abilities, women SA is lower than men-to-men and women-to-men PA, and in this facet differences are larger than in the rest.

It was not beyond the bounds of possibility that low women SA could be related to women performing at a lower level than men. With the aim of discarding this hypothesis, we have analysed the final individual grades of the entire population of this analysis, and compared them. Although women’s grades are slightly lower than men’s in average (6.19 vs. 6.45), the t-test comparison of these two categories gives $p = .368$, thus the difference is far from being significant. Therefore, women’s lower performance should not be considered as the reason for the differences in SA and PA results.

Figure 1. Mean and standard error values for each category and facet in the poll.
In summary, women tend to self-assess at lower rates in several areas inconsistent with their actual performance and with their PA.

Conclusions

Probably, the most outstanding general impression from this analysis is that, such as we hypothesized, women judge themselves too severely. Men’s judgement about themselves is more adjusted to the opinion that others have of them. At least in our case, in engineering studies the gender factor may have some influence in our students’ PSA. PSA may not be sufficiently fair and accurate, and gender is perhaps an influential factor in girls underrating themselves.

We must be very cautious about our results though; gender has been the only factor considered in our research, but, needless to say, friendship, hostility, lack of training and many others may have had an influence too (whereas grade point average has not proved to be a significant factor, as previously mentioned). Finally, we must not overlook the possibility of women’s lower rating to be related to gender stereotypes, Engineering being stereotypically assumed to be a masculine domain, as we presupposed. Further investigations with students from different disciplines might confirm whether gender affects Engineering students more than students from other disciplines. Our findings are consonant with some prior investigations, especially the girls’ tendency to undervalue other girls’ and their own performances. Because we claim that these studies do not report a mere collection of anecdotes, to fully interpret our results a political reading of them seems to be required. For us, this entails relating them to the investigations on gender differences and to feminist accounts of those differences mentioned earlier in this paper.

For Crossouard (2012), classroom community dynamics at school reflect gender privileges and hierarchies. Our research seems to demonstrate that PSA in engineering studies in HE may also reflect gendered hierarchies which privilege some students and leave others more vulnerable to gendered conceptions: girls being the losers here, as they are underrated, particularly by themselves. In view of our findings, it seems appropriate to feedback students the average rating their mates give them, so they can compare it with their self-assessment and adjust the vision they have of their contribution to the group. This can help to soften the overly critical judgment that women make of themselves. But this does not seem to be enough.

Further recommendations

In order to ensure that PSA is valid, several authors have recommended that PSA should be supported when students or teachers are beginners in the techniques (e.g., Dancer & Dancer, 1992; Dochy et al., 1999). Particularly, induction and training sessions are recommended to persuade students of its benefits and to inform them of how the techniques work. We claim that additionally students need gender-awareness sessions on how unconscious gender attitudes and perceptions may contribute to PSA. After all, if ‘understanding the processes of self- and peer assessment requires an appreciation of students’ perceptions of themselves and others’ (Langan et al., 2008, p. 187), being aware of the role of gender in the perception of oneself and other people is a must.
PSA is often described as a process of formative assessment. As a way to implement non-biased PSA, students can be prepared through certain classroom practices. For instance, it might be advisable to negotiate assessment criteria with the class in advance, with attention to gender. Intensive discussions and exchange of ideas with students must occur before introducing PSA practices. Students ought to be alerted to implicit ideas about what constitutes good and bad performances, especially in oral presentations (Bengoechea, 2014). After PSA implementation, students can be asked to explain why they have evaluated themselves and others in particular ways or why they have considered some performances as lower or higher ones. Students’ answers might be critically discussed in class, avoiding stereotypes and stressing the role of gender socialization. The tendency of women to underrate themselves should be uncovered and dismantled.

Teachers engaged in PSA are not always acquainted with the gender bias that might be present in these methods – surprisingly the results of more than a century of research on gender have not permeated the institutional discourse on tertiary education and gender is generally ignored in the literature on PSA implementation. In consequence, prior to training students, instruction on the role/effect of gender in PSA seems necessary for the teaching staff. Teachers should be supported in considering how gender is implicated in PSA and in developing classroom discourse that addresses social equity issues. In this way, they will be able to effectively monitor and coach students. And attitudes impinging self-development and improvement, such as girls’ excessive self-demand, may be prevented.

Acknowledgements

The authors wish to thank Antonio Pena Giménez, Professor Researcher at the University of Vigo, coordinator of the Sound and Image itinerary of the Telecommunication Engineering Degree and responsible for the implementation of the peer and self-assessment procedure, results of which are analysed here. We also thank the two anonymous reviewers for their useful comments.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

